Relation To Other Frameworks and Concepts in Quantum Field Theory
The Wightman framework does not cover infinite energy states like finite temperature states.
Unlike local quantum field theory, the Wightman axioms restrict the causal structure of the theory explicitly by imposing either commutativity or anticommutativity between spacelike separated fields, instead of deriving the causal structure as a theorem. If one considers a generalization of the Wightman axioms to dimensions other than 4, this (anti)commutativity postulate rules out anyons and braid statistics in lower dimensions.
The Wightman postulate of a unique vacuum state doesn't necessarily make the Wightman axioms inappropriate for the case of spontaneous symmetry breaking because we can always restrict ourselves to a superselection sector.
The cyclicity of the vacuum demanded by the Wightman axioms means that they describe only the superselection sector of the vacuum; again, that is not a great loss of generality. However, this assumption does leave out finite energy states like solitons which can't be generated by a polynomial of fields smeared by test functions because a soliton, at least from a field theoretic perspective, is a global structure involving topological boundary conditions at infinity.
The Wightman framework does not cover effective field theories because there is no limit as to how small the support of a test function can be. I.e., there is no cutoff scale.
The Wightman framework also does not cover gauge theories. Even in Abelian gauge theories conventional approaches start off with a "Hilbert space" (it's not a Hilbert space, but physicists call it a Hilbert space) with an indefinite norm and the physical states and physical operators belong to a cohomology. This obviously is not covered anywhere in the Wightman framework. (However as shown by Schwinger, Christ and Lee, Gribov, Zwanziger, Van Baal, etc., canonical quantization of gauge theories in Coulomb gauge is possible with an ordinary Hilbert space, and this might be the way to make them fall under the applicability of the axiom systematics.)
The Wightman axioms can be rephrased in terms of a state called a Wightman functional on a Borchers algebra equal to the tensor algebra of a space of test functions.
Read more about this topic: Wightman Axioms
Famous quotes containing the words relation to, relation, concepts, quantum, field and/or theory:
“You must realize that I was suffering from love and I knew him as intimately as I knew my own image in a mirror. In other words, I knew him only in relation to myself.”
—Angela Carter (19401992)
“There is the falsely mystical view of art that assumes a kind of supernatural inspiration, a possession by universal forces unrelated to questions of power and privilege or the artists relation to bread and blood. In this view, the channel of art can only become clogged and misdirected by the artists concern with merely temporary and local disturbances. The song is higher than the struggle.”
—Adrienne Rich (b. 1929)
“Germany collapsed as a result of having engaged in a struggle for empire with the concepts of provincial politics.”
—Albert Camus (19131960)
“A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.”
—Hubert C. Heffner (19011985)
“The field of the poor may yield much food, but it is swept away through injustice.”
—Bible: Hebrew, Proverbs 13:23.
“Many people have an oversimplified picture of bonding that could be called the epoxy theory of relationships...if you dont get properly glued to your babies at exactly the right time, which only occurs very soon after birth, then you will have missed your chance.”
—Pamela Patrick Novotny (20th century)