Relation To Other Frameworks and Concepts in Quantum Field Theory
The Wightman framework does not cover infinite energy states like finite temperature states.
Unlike local quantum field theory, the Wightman axioms restrict the causal structure of the theory explicitly by imposing either commutativity or anticommutativity between spacelike separated fields, instead of deriving the causal structure as a theorem. If one considers a generalization of the Wightman axioms to dimensions other than 4, this (anti)commutativity postulate rules out anyons and braid statistics in lower dimensions.
The Wightman postulate of a unique vacuum state doesn't necessarily make the Wightman axioms inappropriate for the case of spontaneous symmetry breaking because we can always restrict ourselves to a superselection sector.
The cyclicity of the vacuum demanded by the Wightman axioms means that they describe only the superselection sector of the vacuum; again, that is not a great loss of generality. However, this assumption does leave out finite energy states like solitons which can't be generated by a polynomial of fields smeared by test functions because a soliton, at least from a field theoretic perspective, is a global structure involving topological boundary conditions at infinity.
The Wightman framework does not cover effective field theories because there is no limit as to how small the support of a test function can be. I.e., there is no cutoff scale.
The Wightman framework also does not cover gauge theories. Even in Abelian gauge theories conventional approaches start off with a "Hilbert space" (it's not a Hilbert space, but physicists call it a Hilbert space) with an indefinite norm and the physical states and physical operators belong to a cohomology. This obviously is not covered anywhere in the Wightman framework. (However as shown by Schwinger, Christ and Lee, Gribov, Zwanziger, Van Baal, etc., canonical quantization of gauge theories in Coulomb gauge is possible with an ordinary Hilbert space, and this might be the way to make them fall under the applicability of the axiom systematics.)
The Wightman axioms can be rephrased in terms of a state called a Wightman functional on a Borchers algebra equal to the tensor algebra of a space of test functions.
Read more about this topic: Wightman Axioms
Famous quotes containing the words relation to, relation, concepts, quantum, field and/or theory:
“There is the falsely mystical view of art that assumes a kind of supernatural inspiration, a possession by universal forces unrelated to questions of power and privilege or the artists relation to bread and blood. In this view, the channel of art can only become clogged and misdirected by the artists concern with merely temporary and local disturbances. The song is higher than the struggle.”
—Adrienne Rich (b. 1929)
“It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.”
—René Descartes (15961650)
“Science is a dynamic undertaking directed to lowering the degree of the empiricism involved in solving problems; or, if you prefer, science is a process of fabricating a web of interconnected concepts and conceptual schemes arising from experiments and observations and fruitful of further experiments and observations.”
—James Conant (18931978)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“I learn immediately from any speaker how much he has already lived, through the poverty or the splendor of his speech. Life lies behind us as the quarry from whence we get tiles and copestones for the masonry of today. This is the way to learn grammar. Colleges and books only copy the language which the field and the work-yard made.”
—Ralph Waldo Emerson (18031882)
“every subjective phenomenon is essentially connected with a single point of view, and it seems inevitable that an objective, physical theory will abandon that point of view.”
—Thomas Nagel (b. 1938)