Explanation of The Wieferich Property
The stronger version of Fermat's little theorem, which a Wieferich prime satisfies, is usually expressed as a congruence relation 2p − 1 ≡ 1 (mod p2). From the definition of the congruence relation on integers, it follows that this property is equivalent to the definition given at the beginning. Thus if a prime p satisfies this congruence, this prime divides the Fermat quotient . The following are two illustrative examples using the primes 11 and 1093:
For p = 11, we get which is 93 and leaves a remainder of 5 after division by 11, hence 11 is not a Wieferich prime. For p = 1093, we get or 530585362....3096656895 (320 intermediate digits omitted for clarity), which leaves a remainder of 0 after division by 1093 and thus 1093 is a Wieferich prime.
Read more about this topic: Wieferich Prime
Famous quotes containing the words explanation of the, explanation of, explanation and/or property:
“What causes adolescents to rebel is not the assertion of authority but the arbitrary use of power, with little explanation of the rules and no involvement in decision-making. . . . Involving the adolescent in decisions doesnt mean that you are giving up your authority. It means acknowledging that the teenager is growing up and has the right to participate in decisions that affect his or her life.”
—Laurence Steinberg (20th century)
“How strange a scene is this in which we are such shifting figures, pictures, shadows. The mystery of our existenceI have no faith in any attempted explanation of it. It is all a dark, unfathomed profound.”
—Rutherford Birchard Hayes (18221893)
“My companion assumes to know my mood and habit of thought, and we go on from explanation to explanation, until all is said that words can, and we leave matters just as they were at first, because of that vicious assumption.”
—Ralph Waldo Emerson (18031882)
“Crimes increase as education, opportunity, and property decrease. Whatever spreads ignorance, poverty and, discontent causes crime.... Criminals have their own responsibility, their own share of guilt, but they are merely the hand.... Whoever interferes with equal rights and equal opportunities is in some ... real degree, responsible for the crimes committed in the community.”
—Rutherford Birchard Hayes (18221893)