Statement
More accurately, we suppose given CW complexes X and Y, with respective base points x and y. Given a continuous mapping
such that f(x) = y, we consider for n ≥ 0 the induced homomorphisms
where πn denotes for n ≥ 1 the n-th homotopy group. For n = 0 this means the mapping of the path-connected components; if we assume both X and Y are connected we can ignore this as containing no information. We say that f is a weak homotopy equivalence if the homomorphisms f* are all isomorphisms. The Whitehead theorem then states that a weak homotopy equivalence, for connected CW complexes, is a homotopy equivalence.
Read more about this topic: Whitehead Theorem
Famous quotes containing the word statement:
“The new statement will comprise the skepticisms, as well as the faiths of society, and out of unbeliefs a creed shall be formed. For, skepticisms are not gratuitous or lawless, but are limitations of the affirmative statement, and the new philosophy must take them in, and make affirmations outside of them, just as much as must include the oldest beliefs.”
—Ralph Waldo Emerson (18031882)
“No statement about God is simply, literally true. God is far more than can be measured, described, defined in ordinary language, or pinned down to any particular happening.”
—David Jenkins (b. 1925)
“Truth is used to vitalize a statement rather than devitalize it. Truth implies more than a simple statement of fact. I dont have any whisky, may be a fact but it is not a truth.”
—William Burroughs (b. 1914)