Weil Group of An Archimedean Local Field
For archimedean local fields the Weil group is easy to describe: for C it is the group C× of non-zero complex numbers, and for R it is a non-split extension of the Galois group of order 2 by the group of non-zero complex numbers, and can be identified with the subgroup C× ∪ j C× of the non-zero quaternions.
Read more about this topic: Weil Group
Famous quotes containing the words weil, group, local and/or field:
“The most important part of teaching = to teach what it is to know.”
—Simone Weil (19091943)
“He hung out of the window a long while looking up and down the street. The worlds second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.”
—John Dos Passos (18961970)
“The local is a shabby thing. Theres nothing worse than bringing us back down to our own little corner, our own territory, the radiant promiscuity of the face to face. A culture which has taken the risk of the universal, must perish by the universal.”
—Jean Baudrillard (b. 1929)
“Hardly a book of human worth, be it heavens own secret, is honestly placed before the reader; it is either shunned, given a Periclean funeral oration in a hundred and fifty words, or interred in the potters field of the newspapers back pages.”
—Edward Dahlberg (19001977)