Weil Conjectures - Grothendieck's Formula For The Zeta Function

Grothendieck's Formula For The Zeta Function

Grothendieck proved an analogue of the Lefschetz fixed point formula for l-adic cohomology theory, and by applying it to the Frobenius automorphism F was able to prove the following formula for the zeta function.

where each polynomial Pi is the determinant of I − TF on the l-adic cohomology group Hi.

The rationality of the zeta function follows immediately. The functional equation for the zeta function follows from Poincaré duality for l-adic cohomology, and the relation with complex Betti numbers of a lift follows from a comparison theorem between l-adic and ordinary cohomology for complex varieties.

More generally, Grothendieck proved a similar formula for the zeta function of a sheaf F0:

as a product over cohomology groups:

The special case of the constant sheaf gives the usual zeta function.

Read more about this topic:  Weil Conjectures

Famous quotes containing the words formula and/or function:

    I take it that what all men are really after is some form or perhaps only some formula of peace.
    Joseph Conrad (1857–1924)

    Science has fulfilled her function when she has ascertained and enunciated truth.
    Thomas Henry Huxley (1825–95)