Definition
A Weil cohomology theory is a contravariant functor:
-
-
-
- H*: {smooth projective varieties over a field k} → {graded K-algebras}
-
-
subject to the axioms below. Note that the field K is not to be confused with k; the former is a field of characteristic zero, called the coefficient field, whereas the base field k can be arbitrary. Suppose X is a smooth projective algebraic variety of dimension n, then the graded K-algebra H*(X) = ⊕Hi(X) is subject to the following:
- Hi(X) are finite-dimensional K-vector spaces.
- Hi(X) vanish for i < 0 or i > 2n.
- H2n(X) is isomorphic to K (so-called orientation map).
- There is a Poincaré duality, i.e. a non-degenerate pairing: Hi(X) × H2n−i(X) → H2n(X) ≅ K.
- There is a canonical Künneth isomorphism: H*(X) ⊗ H*(Y) → H*(X × Y).
- There is a cycle-map: γX: Zi(X) → H2i(X), where the former group means algebraic cycles of codimension i, satisfying certain compatibility conditions with respect to functionality of H, the Künneth isomorphism and such that for X a point, the cycle map is the inclusion Z ⊂ K.
- Weak Lefschetz axiom: For any smooth hyperplane section j: W ⊂ X (i.e. W = X ∩ H, H some hyperplane in the ambient projective space), the maps j*: Hi(X) → Hi(W) are isomorphisms for i ≤ n-2 and a monomorphism for i ≤ n-1.
- Hard Lefschetz axiom: Again let W be a hyperplane section and w = γX(W) ∈ H2(X)be its image under the cycle class map. The Lefschetz operator L: Hi(X) → Hi+2(X) maps x to x·w (the dot denotes the product in the algebra H*(X)). The axiom states that Li: Hn−i(X) → Hn+i(X) is an isomorphism for i=1, ..., n.
Read more about this topic: Weil Cohomology Theory
Famous quotes containing the word definition:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)