Weighted Mean - Dealing With Variance

Dealing With Variance

See also: Least squares#Weighted least squares See also: Linear least squares (mathematics)#Weighted linear least squares

For the weighted mean of a list of data for which each element comes from a different probability distribution with known variance, one possible choice for the weights is given by:


w_i = \frac{1}{\sigma_i^2}.

The weighted mean in this case is:


\bar{x} = \frac{ \sum_{i=1}^n (x_i/{\sigma_i}^2)}{\sum_{i=1}^n (1/{\sigma_i}^2)},

and the variance of the weighted mean is:


\sigma_{\bar{x}}^2 = \frac{ 1 }{\sum_{i=1}^n (1/{\sigma_i}^2)},

which reduces to, when all

The significance of this choice is that this weighted mean is the maximum likelihood estimator of the mean of the probability distributions under the assumption that they are independent and normally distributed with the same mean.

Read more about this topic:  Weighted Mean

Famous quotes containing the words dealing with, dealing and/or variance:

    What we do in our dreams we also do when we are awake: we invent and make up the person we are dealing with—and immediately forget that we have done it.
    Friedrich Nietzsche (1844–1900)

    Mediocre people have an answer for everything and are astonished at nothing. They always want to have the air of knowing better than you what you are going to tell them; when, in their turn, they begin to speak, they repeat to you with the greatest confidence, as if dealing with their own property, the things that they have heard you say yourself at some other place.... A capable and superior look is the natural accompaniment of this type of character.
    Eugène Delacroix (1798–1863)

    There is an untroubled harmony in everything, a full consonance in nature; only in our illusory freedom do we feel at variance with it.
    Fyodor Tyutchev (1803–1873)