Weighted Mean - Dealing With Variance

Dealing With Variance

See also: Least squares#Weighted least squares See also: Linear least squares (mathematics)#Weighted linear least squares

For the weighted mean of a list of data for which each element comes from a different probability distribution with known variance, one possible choice for the weights is given by:


w_i = \frac{1}{\sigma_i^2}.

The weighted mean in this case is:


\bar{x} = \frac{ \sum_{i=1}^n (x_i/{\sigma_i}^2)}{\sum_{i=1}^n (1/{\sigma_i}^2)},

and the variance of the weighted mean is:


\sigma_{\bar{x}}^2 = \frac{ 1 }{\sum_{i=1}^n (1/{\sigma_i}^2)},

which reduces to, when all

The significance of this choice is that this weighted mean is the maximum likelihood estimator of the mean of the probability distributions under the assumption that they are independent and normally distributed with the same mean.

Read more about this topic:  Weighted Mean

Famous quotes containing the words dealing with, dealing and/or variance:

    They [women] can use their abilities to support each other, even as they develop more effective and appropriate ways of dealing with power.... Women do not need to diminish other women ... [they] need the power to advance their own development, but they do not “need” the power to limit the development of others.
    Jean Baker Miller (20th century)

    ... dealing with being a lesbian—and part of that is by being politically activist—has caused me to have a less carefree adolescence. But I don’t think that’s a bad thing. It has its rewards.
    Karina Luboff (b. 1974)

    There is an untroubled harmony in everything, a full consonance in nature; only in our illusory freedom do we feel at variance with it.
    Fyodor Tyutchev (1803–1873)