In quantum field theory, wave function renormalization is a rescaling, or renormalization, of quantum fields to take into account the effects of interactions. For a noninteracting or free field, the field operator creates or annihilates a single particle with probability 1. Once interactions are included, however, this probability is modified in general to Z 1. This shows up when one calculates the propagator beyond leading order; e.g., for a scalar field,
(The shift of the mass from m0 to m constitutes the mass renormalization.)
One possible wave function renormalization, which happens to be scale independent, is to rescale the fields so that the Lehmann weight (Z in the formula above) of their quanta is 1. (It's trickier to define it for unstable particles). For the purposes of studying renormalization group flows, if the coefficient of the kinetic term in the action at the scale Λ is Z, then the field is rescaled by . A scale dependent wavefunction renormalization for a field means that that field has an anomalous scaling dimension.
Read more about Wave Function Renormalization: See Also
Famous quotes containing the words wave and/or function:
“Through the dark cold and the empty desolation,
The wave cry, the wind cry, the vast waters
Of the petrel and the porpoise. In my end is my beginning.”
—T.S. (Thomas Stearns)
“If the children and youth of a nation are afforded opportunity to develop their capacities to the fullest, if they are given the knowledge to understand the world and the wisdom to change it, then the prospects for the future are bright. In contrast, a society which neglects its children, however well it may function in other respects, risks eventual disorganization and demise.”
—Urie Bronfenbrenner (b. 1917)