Wannier Function - Definition

Definition

Although Wannier functions can be chosen in many different ways, the original, simplest, and most common definition in solid-state physics is as follows. Choose a single band in a perfect crystal, and denote its Bloch states by

where has the same periodicity as the crystal. Then the Wannier functions are defined by

,

where

  • R is any lattice vector (i.e., there is one Wannier function for each Bravais lattice vector);
  • N is the number of primitive cells in the crystal;
  • The sum on k includes all the values of k in the Brillouin zone (or any other primitive cell of the reciprocal lattice) that are consistent with periodic boundary conditions on the crystal. This includes N different values of k, spread out uniformly through the Brillouin zone. Since N is usually very large, the sum can be written as an integral according to the replacement rule:

where "BZ" denotes the Brillouin zone, which has volume Ω.

Read more about this topic:  Wannier Function

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)