Wallace John Eckert - Solution of Differential Equations For Astronomy

Solution of Differential Equations For Astronomy

Around 1933 Eckert proposed interconnecting punched card tabulating machines from IBM located in Columbia's Rutherford Laboratory to perform more than simple statistical calculations. Eckert arranged with IBM president Thomas J. Watson for a donation of newly developed IBM 601 calculating punch, which could multiply instead of just adding and subtracting. In 1937 the facility was named the Thomas J. Watson Astronomical Computing Bureau. IBM support included customer service and hardware circuit modifications needed to tabulate numbers, create mathematical tables, add, subtract, multiply, reproduce, verify, create tables of differences, create tables of logarithms and perform Lagrangian interpolation, all to solve differential equations for astronomical applications. In January 1940, Eckert published Punched Card Methods in Scientific Computation, which solved the problem of predicting the orbits of the planets, using the IBM electric tabulating machines, based on the punched card. This slim book is only 136 pages, including the index.

Read more about this topic:  Wallace John Eckert

Famous quotes containing the words solution of, solution, differential and/or astronomy:

    The truth of the thoughts that are here set forth seems to me unassailable and definitive. I therefore believe myself to have found, on all essential points, the final solution of the problems. And if I am not mistaken in this belief, then the second thing in which the value of this work consists is that it shows how little is achieved when these problems are solved.
    Ludwig Wittgenstein (1889–1951)

    I can’t quite define my aversion to asking questions of strangers. From snatches of family battles which I have heard drifting up from railway stations and street corners, I gather that there are a great many men who share my dislike for it, as well as an equal number of women who ... believe it to be the solution to most of this world’s problems.
    Robert Benchley (1889–1945)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    Awareness of the stars and their light pervades the Koran, which reflects the brightness of the heavenly bodies in many verses. The blossoming of mathematics and astronomy was a natural consequence of this awareness. Understanding the cosmos and the movements of the stars means understanding the marvels created by Allah. There would be no persecuted Galileo in Islam, because Islam, unlike Christianity, did not force people to believe in a “fixed” heaven.
    Fatima Mernissi, Moroccan sociologist. Islam and Democracy, ch. 9, Addison-Wesley Publishing Co. (Trans. 1992)