Volumetric Heat Capacity - Volumetric Heat Capacity in Solids

Volumetric Heat Capacity in Solids

Since the bulk density of a solid chemical element is strongly related to its molar mass (usually about 3 R per mole, as noted above), there exists noticeable inverse correlation between a solid’s density and its specific heat capacity on a per-mass basis. This is due to a very approximate tendency of atoms of most elements to be about the same size, despite much wider variations in density and atomic weight. These two factors (constancy of atomic volume and constancy of mole-specific heat capacity) result in a good correlation between the volume of any given solid chemical element and its total heat capacity. Another way of stating this, is that the volume-specific heat capacity (volumetric heat capacity) of solid elements is roughly a constant. The molar volume of solid elements is very roughly constant, and (even more reliably) so also is the molar heat capacity for most solid substances. These two factors determine the volumetric heat capacity, which as a bulk property may be striking in consistency. For example, the element uranium is a metal which has a density almost 36 times that of the metal lithium, but uranium's volumetric heat capacity is only about 20% larger than lithium's.

Since the volume-specific corollary of the Dulong-Petit specific heat capacity relationship requires that atoms of all elements take up (on average) the same volume in solids, there are many departures from it, with most of these due to variations in atomic size. For instance, arsenic, which is only 14.5% less dense than antimony, has nearly 59% more specific heat capacity on a mass basis. In other words; even though an ingot of arsenic is only about 17% larger than an antimony one of the same mass, it absorbs about 59% more heat for a given temperature rise. The heat capacity ratios of the two substances closely follows the ratios of their molar volumes (the ratios of numbers of atoms in the same volume of each substance); the departure from the correlation to simple volumes in this case is due to lighter arsenic atoms being significantly more closely packed than antimony atoms, instead of similar size. In other words, similar-sized atoms would cause a mole of arsenic to be 63% larger than a mole of antimony, with a correspondingly lower density, allowing its volume to more closely mirror its heat capacity behavior.

Read more about this topic:  Volumetric Heat Capacity

Famous quotes containing the words heat and/or capacity:

    Even if you find yourself in a heated exchange with your toddler, it is better for your child to feel the heat rather than for him to feel you withdraw emotionally.... Active and emotional involvement between parent and child helps the child make the limits a part of himself.
    Stanley I. Greenspan (20th century)

    We have dreamt of every woman there is, and dreamt too of the miracle that would bring us the pleasure of being a woman, for women have all the qualities—courage, passion, the capacity to love, cunning—whereas all our imagination can do is naively pile up the illusion of courage.
    Jean Baudrillard (b. 1929)