Invariants of A Volume Form
Volume forms are not unique; they form a torsor over non-vanishing functions on the manifold, as follows. Given a non-vanishing function f on M, and a volume form, is a volume form on M. Conversely, given two volume forms, their ratio is a non-vanishing function (positive if they define the same orientation, negative if they define opposite orientations).
In coordinates, they are both simply a non-zero function times Lebesgue measure, and their ratio is the ratio of the functions, which is independent of choice of coordinates. Intrinsically, it is the Radon–Nikodym derivative of with respect to . On an oriented manifold, the proportionality of any two volume forms can be thought of as a geometric form of the Radon–Nikodym theorem.
Read more about this topic: Volume Form
Famous quotes containing the words volume and/or form:
“F.R. Leaviss eat up your broccoli approach to fiction emphasises this junkfood/wholefood dichotomy. If reading a novelfor the eighteenth century reader, the most frivolous of diversionsdid not, by the middle of the twentieth century, make you a better person in some way, then you might as well flush the offending volume down the toilet, which was by far the best place for the undigested excreta of dubious nourishment.”
—Angela Carter (19401992)
“We find the most terrible form of atheism, not in the militant and passionate struggle against the idea of God himself, but in the practical atheism of everyday living, in indifference and torpor. We often encounter these forms of atheism among those who are formally Christians.”
—Nicolai A. Berdyaev (18741948)