Definition
Let (M, g) be a compact Riemannian manifold, with universal cover Choose a point .
The volume entropy (or asymptotic volume growth) is defined as the limit
where B(R) is the ball of radius R in centered at and vol is the Riemannian volume in the universal cover with the natural Riemannian metric.
A. Manning proved that the limit exists and does not depend on the choice of the base point. This asymptotic invariant describes the exponential growth rate of the volume of balls in the universal cover as a function of the radius.
Read more about this topic: Volume Entropy
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)