Formal Definition
A vertex algebra is a vector space V, together with an identity element 1∈V, an endomorphism T: V → V, and a linear multiplication map
from the tensor product of V with itself to the space V((z)) of all formal Laurent series with coefficients in V, written as:
and satisfying the following axioms:
- (Identity) For any a ∈ V, Y(1,z)a = a = az0 and .
- (Translation) T(1) = 0, and for any a, b ∈ V,
- (Four point function) For any a, b, c ∈ V, there is an element
The multiplication map is often written as a state-field correspondence
associating an operator-valued formal distribution (called a vertex operator) to each vector. Physically, the correspondence is an insertion at the origin, and T is a generator of infinitesimal translations. The four-point axiom combines associativity and commutativity, up to singularities along . Note that the translation axiom implies Ta = a-21, so T is determined by Y.
A vertex algebra V is Z+-graded if
such that if a, b are homogeneous, then an b is homogeneous of degree deg(a)+deg(b)-n-1.
A vertex operator algebra is a Z+-graded vertex algebra equipped with a Virasoro element ω ∈ V2, such that the vertex operator
satisfies for any a ∈ Vn, the relations:
where c is a constant called the central charge, or rank of V. In particular, this gives V the structure of a representation of the Virasoro algebra.
Read more about this topic: Vertex Operator Algebra
Famous quotes containing the words formal and/or definition:
“This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. Its no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.”
—Leontine Young (20th century)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)