Vector Spherical Harmonics - Definition

Definition

Several conventions have been used to define the VSH. We follow that of Barrera et al.. Given a scalar spherical harmonic we define three VSH:

being the unitary vector along the radial direction and the position vector of the point with spherical coordinates, and. The radial factors are included to guarantee that the dimensions of the VSH are the same as the ordinary spherical harmonics and that the VSH do not depend on the radial spherical coordinate.

The interest of these new vector fields is to separate the radial dependence from the angular one when using spherical coordinates, so that a vector field admits a multipole expansion

The labels on the components reflect that is the radial component of the vector field, while and are transverse components.

Read more about this topic:  Vector Spherical Harmonics

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)