In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a scalar potential, which is a scalar field whose gradient is a given vector field.
Formally, given a vector field v, a vector potential is a vector field A such that
If a vector field v admits a vector potential A, then from the equality
(divergence of the curl is zero) one obtains
which implies that v must be a solenoidal vector field.
Read more about Vector Potential: Theorem, Nonuniqueness
Famous quotes containing the word potential:
“Humanity has passed through a long history of one-sidedness and of a social condition that has always contained the potential of destruction, despite its creative achievements in technology. The great project of our time must be to open the other eye: to see all-sidedly and wholly, to heal and transcend the cleavage between humanity and nature that came with early wisdom.”
—Murray Bookchin (b. 1941)