Variety (universal Algebra)

Variety (universal Algebra)

In mathematics, specifically universal algebra, a variety of algebras is the class of all algebraic structures of a given signature satisfying a given set of identities. Equivalently, a variety is a class of algebraic structures of the same signature which is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras is usually called a finitary algebraic category.

A covariety is the class of all coalgebraic structures of a given signature.

A variety of algebras should not be confused with an algebraic variety. Intuitively, a variety of algebras is an equationally defined collection of algebras, while an algebraic variety is an equationally defined collection of elements from a single algebra. The two are named alike by analogy, but they are formally quite distinct and their theories have little in common.

Read more about Variety (universal Algebra):  Birkhoff's Theorem, Examples, Pseudovariety of Finite Algebras, Category Theory

Famous quotes containing the word variety:

    Is a Bill of Rights a security for [religious liberty]? If there were but one sect in America, a Bill of Rights would be a small protection for liberty.... Freedom derives from a multiplicity of sects, which pervade America, and which is the best and only security for religious liberty in any society. For where there is such a variety of sects, there cannot be a majority of any one sect to oppress and persecute the rest.
    James Madison (1751–1836)