In the mathematical fields of the calculus of variations and differential geometry, the variational vector field is a certain type of vector field defined on the tangent bundle of a differentiable manifold which gives rise to variations along a vector field in the manifold itself.
Specifically, let X be a vector field on M. Then X generates a one-parameter group of local diffeomorphisms FlXt, the flow along X. The differential of FlXt gives, for each t, a mapping
where TM denotes the tangent bundle of M. This is a one-parameter group of local diffeomorphisms of the tangent bundle. The variational vector field of X, denoted by T(X) is the tangent to the flow of d FlXt.
Famous quotes containing the word field:
“Beat! beat! drums!blow! bugles! blow!
Through the windowsthrough doorsburst like a ruthless force,
Into the solemn church, and scatter the congregation;
Into the school where the scholar is studying;
Leave not the bridegroom quietno happiness must he have now with his bride;
Nor the peaceful farmer any peace, plough his field or gathering his
grain;
So fierce you whirr and pound, you drumsso shrill you bugles blow.”
—Walt Whitman (18191892)