Unusual Number

In number theory, an unusual number is a natural number n whose largest prime factor is strictly greater than (sequence A064052 in OEIS). All prime numbers are unusual.

A k-smooth number has all its prime factors less than or equal to k, therefore, an unusual number is non--smooth.

The first few unusual numbers are 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67....

The first few non-prime unusual numbers are 6, 10, 14, 15, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 42, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102....

If we denote the number of unusual numbers less than or equal to n by u(n) then u(n) behaves as follows:

n u(n) u(n) / n
10 6 0.6
100 67 0.67
1000 715 0.715
10000 7319 0.7319
100000 70128 0.70128

Richard Schroeppel proved in 1972 that the asymptotic probability that a randomly chosen number is unusual is ln(2). In other words:

Famous quotes containing the words unusual and/or number:

    Down these mean streets a man must go who is not himself mean, who is neither tarnished nor afraid.... He is the hero, he is everything. He must be a complete man and a common man and yet an unusual man. He must be, to use a rather weathered phrase, a man of honor, by instinct, by inevitability, without thought of it, and certainly without saying it. He must be the best man in his world and a good enough man for any world.
    Raymond Chandler (1888–1959)

    Nothing ever prepares a couple for having a baby, especially the first one. And even baby number two or three, the surprises and challenges, the cosmic curve balls, keep on coming. We can’t believe how much children change everything—the time we rise and the time we go to bed; the way we fight and the way we get along. Even when, and if, we make love.
    Susan Lapinski (20th century)