Universal Property
Let X be any Lie algebra over K. Given a unital associative K-algebra U and a Lie algebra homomorphism: h: X → UL, (notation as above) we say that U is the universal enveloping algebra of X if it satisfies the following universal property: for any unital associative K-algebra A and Lie algebra homomorphism f: X → AL there exists a unique unital algebra homomorphism g: U → A such that: f(-) = gL (h(-)).
This is the universal property expressing that the functor sending X to its universal enveloping algebra is left adjoint to the functor sending a unital associative algebra A to its Lie algebra AL.
Read more about this topic: Universal Enveloping Algebra
Famous quotes containing the words universal and/or property:
“Nothing comes to pass in nature, which can be set down to a flaw therein; for nature is always the same and everywhere one and the same in her efficiency and power of action; that is, natures laws and ordinances whereby all things come to pass and change from one form to another, are everywhere and always; so that there should be one and the same method of understanding the nature of all things whatsoever, namely, through natures universal laws and rules.”
—Baruch (Benedict)
“We do not deride the fears of prospering white America. A nation of violence and private property has every reason to dread the violated and the deprived.”
—June Jordan (b. 1939)