Unit Disk - Hyperbolic Space

Hyperbolic Space

The open unit disk is commonly used as a model for the hyperbolic plane, by introducing a new metric on it, the Poincaré metric. Using the above mentioned conformal map between the open unit disk and the upper half-plane, this model can be turned into the Poincaré half-plane model of the hyperbolic plane. Both the Poincaré disk and the Poincaré half-plane are conformal models of hyperbolic space, i.e. angles measured in the model coincide with angles in hyperbolic space, and consequently the shapes (but not the sizes) of small figures are preserved.

Another model of hyperbolic space is also built on the open unit disk: the Klein model. It is not conformal, but has the property that straight lines in the model correspond to straight lines in hyperbolic space.

Read more about this topic:  Unit Disk

Famous quotes containing the word space:

    True spoiling is nothing to do with what a child owns or with amount of attention he gets. he can have the major part of your income, living space and attention and not be spoiled, or he can have very little and be spoiled. It is not what he gets that is at issue. It is how and why he gets it. Spoiling is to do with the family balance of power.
    Penelope Leach (20th century)