Unique Games Conjecture

The unique games conjecture states that for every sufficiently small pair of constants ε, δ > 0, there exists a constant k such that the following promise problem (Lyes, Lno) is NP-hard:

  • Lyes = {G: the value of G is at least 1 − δ}
  • Lno = {G: the value of G is at most ε}

where G is a unique game whose answers come from a set of size k.

Read more about Unique Games Conjecture:  Relevance, Discussion and Alternatives

Famous quotes containing the words unique, games and/or conjecture:

    One must love humanity in order to reach out into the unique essence of each individual: no one can be too low or too ugly.
    Georg Büchner (1813–1837)

    At the age of twelve I was finding the world too small: it appeared to me like a dull, trim back garden, in which only trivial games could be played.
    Elizabeth Bowen (1899–1973)

    There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)