In mathematics, a unimodular matrix M is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers: there is an integer matrix N which is its inverse (these are equivalent under Cramer's rule). Thus every equation Mx = b, where M and b are both integer, and M is unimodular, has an integer solution. The unimodular matrices of order n form a group, which is denoted .
Read more about Unimodular Matrix: Examples of Unimodular Matrices, Total Unimodularity, Abstract Linear Algebra
Famous quotes containing the word matrix:
“The matrix is God?
In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this beings omniscience and omnipotence are assumed to be limited to the matrix.
If it has limits, it isnt omnipotent.
Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
—William Gibson (b. 1948)