Uniform Properties
- Separated. A uniform space X is separated if the intersection of all entourages is equal to the diagonal in X × X. This is actually just a topological property, and equivalent to the condition that the underlying topological space is Hausdorff (or simply T0 since every uniform space is completely regular).
- Complete. A uniform space X is complete if every Cauchy net in X converges (i.e. has a limit point in X).
- Totally bounded (or Precompact). A uniform space X is totally bounded if for each entourage E ⊂ X × X there is a finite cover {Ui} of X such that Ui × Ui is contained in E for all i. Equivalently, X is totally bounded if for each entourage E there exists a finite subset {xi} of X such that X is the union of all E. In terms of uniform covers, X is totally bounded if every uniform cover has a finite subcover.
- Compact. A uniform space is compact if it is complete and totally bounded. Despite the definition given here, compactness is a topological property and so admits a purely topological description (every open cover has a finite subcover).
- Uniformly connected. A uniform space X is uniformly connected if every uniformly continuous function from X to a discrete uniform space is constant.
- Uniformly disconnected. A uniform space X is uniformly disconnected if it is not uniformly connected.
Read more about this topic: Uniform Property
Famous quotes containing the words uniform and/or properties:
“We know, Mr. Wellerwe, who are men of the worldthat a good uniform must work its way with the women, sooner or later.”
—Charles Dickens (18121870)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)