Uniform Distribution (discrete)
In probability theory and statistics, the discrete uniform distribution is a probability distribution whereby a finite number of equally spaced values are equally likely to be observed; every one of n values has equal probability 1/n. Another way of saying "discrete uniform distribution" would be "a known, finite number of equally spaced outcomes equally likely to happen".
If a random variable has any of possible values that are equally spaced and equally probable, then it has a discrete uniform distribution. The probability of any outcome is . A simple example of the discrete uniform distribution is throwing a fair die. The possible values of are 1, 2, 3, 4, 5, 6; and each time the die is thrown, the probability of a given score is 1/6. If two dice are thrown and their values added, the uniform distribution no longer fits since the values from 2 to 12 do not have equal probabilities.
The cumulative distribution function (CDF) of the discrete uniform distribution can be expressed in terms of a degenerate distribution as
where the Heaviside step function is the CDF of the degenerate distribution centered at, using the convention that
Read more about Uniform Distribution (discrete): Estimation of Maximum, Random Permutation
Famous quotes containing the words uniform and/or distribution:
“The maples
Stood uniform in buckets, and the steam
Of sap and snow rolled off the sugarhouse.”
—Robert Frost (18741963)
“In this distribution of functions, the scholar is the delegated intellect. In the right state, he is, Man Thinking. In the degenerate state, when the victim of society, he tends to become a mere thinker, or, still worse, the parrot of other mens thinking.”
—Ralph Waldo Emerson (18031882)