Unification (computer Science) - Definition of Unification For First-order Logic

Definition of Unification For First-order Logic

Let p and q be sentences in first-order logic.

UNIFY(p,q) = U where subst(U,p) = subst(U,q)

Where subst(U,p) means the result of applying substitution U on the sentence p. Then U is called a unifier for p and q. The unification of p and q is the result of applying U to both of them.

Let L be a set of sentences, for example, L = {p,q}. A unifier U is called a most general unifier for L if, for all unifiers U' of L, there exists a substitution s such that applying s to the result of applying U to L gives the same result as applying U' to L:

subst(U',L) = subst(s,subst(U,L)).

Read more about this topic:  Unification (computer Science)

Famous quotes containing the words definition of, definition and/or logic:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    The logic of the world is prior to all truth and falsehood.
    Ludwig Wittgenstein (1889–1951)