Unicity Distance - Relation With Key Size and Possible Plaintexts

Relation With Key Size and Possible Plaintexts

In general, given any particular assumptions about the size of the key and the number of possible messages, there is an average ciphertext length where there is only one key (on average) that will generate a readable message. In the example above we see only upper case Roman characters, so if we assume this is the input then there are 26 possible letters for each position in the string. Likewise if we assume five-character upper case keys, there are K=265 possible keys, of which the majority will not "work".

A tremendous number of possible messages, N, can be generated using even this limited set of characters: N = 26L, where L is the length of the message. However only a smaller set of them is readable plaintext due to the rules of the language, perhaps M of them, where M is likely to be very much smaller than N. Moreover M has a one-to-one relationship with the number of keys that work, so given K possible keys, only K × (M/N) of them will "work". One of these is the correct key, the rest are spurious.

Since N is dependent on the length of the message L, whereas M is dependent on the number of keys, K, there is some L where the number of spurious keys is zero. This L is the unicity distance.

Read more about this topic:  Unicity Distance

Famous quotes containing the words relation, key and/or size:

    Parents ought, through their own behavior and the values by which they live, to provide direction for their children. But they need to rid themselves of the idea that there are surefire methods which, when well applied, will produce certain predictable results. Whatever we do with and for our children ought to flow from our understanding of and our feelings for the particular situation and the relation we wish to exist between us and our child.
    Bruno Bettelheim (20th century)

    Sunshine of late afternoon—
    On the glass tray

    a glass pitcher, the tumbler
    turned down, by which

    a key is lying—And the
    immaculate white bed
    William Carlos Williams (1883–1963)

    In mathematics he was greater
    Than Tycho Brahe, or Erra Pater:
    For he, by geometric scale,
    Could take the size of pots of ale;
    Resolve, by sines and tangents straight,
    If bread and butter wanted weight;
    And wisely tell what hour o’ th’ day
    The clock doth strike, by algebra.
    Samuel Butler (1612–1680)