The Definition
To motivate Rosenberg's geometric formulation of twisted K-theory, start from the Atiyah-Jänich theorem, stating that
the Fredholm operators on Hilbert space, is a classifying space for ordinary, untwisted K-theory. This means that the K-theory of the space M consists of the homotopy classes of maps
from M to
A slightly more complicated way of saying the same thing is as follows. Consider the trivial bundle of over M, that is, the Cartesian product of M and . Then the K-theory of M consists of the homotopy classes of sections of this bundle.
We can make this yet more complicated by introducing a trivial
bundle over M, where is the group of projective unitary operators on the Hilbert space . Then the group of maps
from to which are equivariant under an action of is equivalent to the original groups of maps
This more complicated construction of ordinary K-theory is naturally generalized to the twisted case. To see this, note that bundles on M are classified by elements H of the third integral cohomology group of M. This is a consequence of the fact that topologically is a representative Eilenberg-MacLane space
The generalization is then straightforward. Rosenberg has defined
- KH(M),
the twisted K-theory of M with twist given by the 3-class H, to be the space of homotopy classes of sections of the trivial bundle over M that are covariant with respect to a bundle fibered over M with 3-class H, that is
Equivalently, it is the space of homotopy classes of sections of the bundles associated to a bundle with class H.
Read more about this topic: Twisted K-theory
Famous quotes containing the word definition:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)