Twin Paradox - Specific Example

Specific Example

Consider a space ship traveling from Earth to the nearest star system outside of our solar system: a distance d = 4 light years away, at a speed v = 0.8c (i.e., 80 percent of the speed of light).

(To make the numbers easy, the ship is assumed to attain its full speed immediately upon departure—actually it would take close to a year accelerating at 1 g to get up to speed.)

The Earth-based mission control reasons about the journey this way: the round trip will take t = 2d/v = 10 years in Earth time (i.e. everybody on Earth will be 10 years older when the ship returns). The amount of time as measured on the ship's clocks and the aging of the travelers during their trip will be reduced by the factor, the reciprocal of the Lorentz factor. In this case ε = 0.6 and the travelers will have aged only 0.6 × 10 = 6 years when they return.

The ship's crew members also calculate the particulars of their trip from their perspective. They know that the distant star system and the Earth are moving relative to the ship at speed v during the trip. In their rest frame the distance between the Earth and the star system is εd = 0.6d = 2.4 light years (length contraction), for both the outward and return journeys. Each half of the journey takes 2.4/v = 3 years, and the round trip takes 2 × 3 = 6 years. Their calculations show that they will arrive home having aged 6 years. The travelers' final calculation is in complete agreement with the calculations of those on Earth, though they experience the trip quite differently from those who stay at home.

If twins are born on the day the ship leaves, and one goes on the journey while the other stays on Earth, they will meet again when the traveler is 6 years old and the stay-at-home twin is 10 years old. The calculation illustrates the usage of the phenomenon of length contraction and the experimentally verified phenomenon of time dilation to describe and calculate consequences and predictions of Einstein's special theory of relativity.

Read more about this topic:  Twin Paradox

Famous quotes containing the word specific:

    No more distressing moment can ever face a British government than that which requires it to come to a hard, fast and specific decision.
    Barbara Tuchman (1912–1989)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)