Turing Machine - Formal Definition

Formal Definition

Hopcroft and Ullman (1979, p. 148) formally define a (one-tape) Turing machine as a 7-tuple where

  • is a finite, non-empty set of states
  • is a finite, non-empty set of the tape alphabet/symbols
  • is the blank symbol (the only symbol allowed to occur on the tape infinitely often at any step during the computation)
  • is the set of input symbols
  • is the initial state
  • is the set of final or accepting states.
  • is a partial function called the transition function, where L is left shift, R is right shift. (A relatively uncommon variant allows "no shift", say N, as a third element of the latter set.)

Anything that operates according to these specifications is a Turing machine.

The 7-tuple for the 3-state busy beaver looks like this (see more about this busy beaver at Turing machine examples):

  • ("blank")
  • (the initial state)
  • see state-table below

Initially all tape cells are marked with 0.

State table for 3 state, 2 symbol busy beaver
Tape symbol Current state A Current state B Current state C
Write symbol Move tape Next state Write symbol Move tape Next state Write symbol Move tape Next state
0 1 R B 1 L A 1 L B
1 1 L C 1 R B 1 R HALT

Read more about this topic:  Turing Machine

Famous quotes containing the words formal and/or definition:

    The bed is now as public as the dinner table and governed by the same rules of formal confrontation.
    Angela Carter (1940–1992)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)