Tuff - Breccias

Breccias

Among the loose beds of ash that cover the slopes of many volcanoes, three classes of materials are represented. In addition to true ashes of the kind described above, there are lumps of the old lavas and tuffs forming the walls of the crater, etc., which have been torn away by the violent outbursts of steam, and pieces of sedimentary rocks from the deeper parts of the volcano that were dislodged by the rising lava and are often intensely baked and recrystallized by the heat to which they have been subjected.

In some great volcanic explosions nothing but materials of the second kind were emitted, as at Mount Bandai in Japan in 1888. There have been many eruptions also in which the quantity of broken sedimentary rocks that mingled with the ash is very great; as instances we may cite the volcanoes of the Eifel and the Devonian tuffs, known as "Schalsteins," in Germany. In the Scottish coalfields some old volcanoes are plugged with masses consisting entirely of sedimentary debris: in such a case it is supposed that no lava was ejected, but the cause of the eruption was the sudden liberation and expansion of a large quantity of steam. These accessory or adventitious materials, however, as distinguished from the true ashes, tend to occur in angular fragments; and when they form a large part of the mass the rock is more properly a "volcanic breccia" than a tuff. The ashes vary in size from large blocks twenty feet or more in diameter to the minutest impalpable dust. The large masses are called "volcanic bombs"; they have mostly a rounded, elliptical or pear-shaped form owing to rotation in the air before they solidified. Many of them have ribbed or nodular surfaces, and sometimes they have a crust intersected by many cracks like the surface of a loaf of bread. Any ash in which they are very abundant is called an agglomerate.

In those layers and beds of tuff that have been spread out over considerable tracts of country and which are most frequently encountered among the sedimentary rocks, smaller fragments preponderate greatly and bombs more than a few inches in diameter may be absent altogether. A tuff of recent origin is generally loose and incoherent, but the older tuffs have been, in most cases, cemented together by pressure and the action of infiltrating water, making rocks which, while not very hard, are strong enough to be extensively used for building purposes (e.g. in the neighborhood of Rome). If they have accumulated subaerially, like the ash beds found on Mt. Etna or Vesuvius at the present day, tuffs consist almost wholly of volcanic materials of different degrees of fineness with pieces of wood and vegetable matter, land shells, etc. But many volcanoes stand near the sea, and the ashes cast out by them are mingled with the sediments that are gathering at the bottom of the waters. In this way ashy muds or sands or even in some cases ashy limestones are being formed. As a matter of fact most of the tuffs found in the older formations contain admixtures of clay, sand, and sometimes fossil shells, which prove that they were beds spread out under water.

During some volcanic eruptions a layer of ashes several feet in thickness is deposited over a considerable district, but such beds thin out rapidly as the distance from the crater increases, and ash deposits covering many square miles are usually very thin. The showers of ashes often follow one another after longer or shorter intervals, and hence thick masses of tuff, whether of subaerial or of marine origin, have mostly a stratified character. The coarsest materials or agglomerates show this least distinctly; in the fine beds it is often developed in great perfection.

Read more about this topic:  Tuff