Trigonometry in Galois Fields - The Z Plane in A Galois Field

The Z Plane in A Galois Field

The complex Z plane (Argand diagram) in GF(p) can be constructed from the supra-unimodular set of GI(p):

  • The supra-unimodular set of GI(p), denoted Gs, is the set of elements ζ = (a + jb) ∈ GI(p), such that (a2 + b2) −1 (mod p).
  • The structure s,*>, is a cyclic group of order 2(p + 1), called the supra-unimodular group of GI(p).

The elements ζ = a + jb of the supra-unimodular group Gs satisfy (a2 + b2)21 (mod p) and all have modulus 1. Gs is precisely the group of phases .

  • If p is a Mersenne prime (p = 2n − 1, n > 2), the elements ζ = a + jb such that a2 + b2 −1 (mod p) are the generators of Gs.

Read more about this topic:  Trigonometry In Galois Fields

Famous quotes containing the words plane and/or field:

    In time the scouring of wind and rain will wear down the ranges and plane off the region until it has the drab monotony of the older deserts. In the meantime—a two-million-year meantime—travelers may enjoy the cruel beauties of a desert in its youth,....
    —For the State of California, U.S. public relief program (1935-1943)

    The birds their quire apply; airs, vernal airs,
    Breathing the smell of field and grove, attune
    The trembling leaves, while universal Pan,
    Knit with the Graces and the Hours in dance,
    Led on th’ eternal Spring.
    John Milton (1608–1674)