Relation With The Exponential Integral of Imaginary Argument
The function
is called the exponential integral. It is closely related to Si and Ci:
As each involved function is analytic except the cut at negative values of the argument, the area of validity of the relation should be extended to . (Out of this range, additional terms which are integer factors of appear in the expression).
Cases of imaginary argument of the generalized integro-exponential function are
which is the real part of
Similarly
Read more about this topic: Trigonometric Integral
Famous quotes containing the words relation, integral, imaginary and/or argument:
“Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.”
—Alexander Herzen (18121870)
“Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made mea book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.”
—Michel de Montaigne (15331592)
“Never waste jealousy on a real man: it is the imaginary man that supplants us all in the long run.”
—George Bernard Shaw (18561950)
“As for Hitler, his professed religion unhesitatingly juxtaposed the God-Providence and Valhalla. Actually his god was an argument at a political meeting and a manner of reaching an impressive climax at the end of speeches.”
—Albert Camus (19131960)



![\int_1^\infty e^{iax}\frac{\ln x}{x^2}dx
=1+ia[-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a-1\right)+\frac{\ln^2 a}{2}-\ln a+1
-\frac{i\pi}{2}(\gamma+\ln a-1)]+\sum_{n\ge 1}\frac{(ia)^{n+1}}{(n+1)!n^2}.](http://upload.wikimedia.org/math/a/e/d/aeded28afed65b67b55686229ace42ee.png)