Trigonometric Integral - Relation With The Exponential Integral of Imaginary Argument

Relation With The Exponential Integral of Imaginary Argument

The function

is called the exponential integral. It is closely related to Si and Ci:


{\rm E}_1( {\rm i}\!~ x) = i\left(-\frac{\pi}{2} + {\rm Si}(x)\right)-{\rm Ci}(x) = i~{\rm si}(x) - {\rm ci}(x) \qquad(x>0)

As each involved function is analytic except the cut at negative values of the argument, the area of validity of the relation should be extended to . (Out of this range, additional terms which are integer factors of appear in the expression).

Cases of imaginary argument of the generalized integro-exponential function are


\int_1^\infty \cos(ax)\frac{\ln x}{x} \, dx =
-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a\right)+\frac{\ln^2a}{2}
+\sum_{n\ge 1}\frac{(-a^2)^n}{(2n)!(2n)^2},

which is the real part of


\int_1^\infty e^{iax}\frac{\ln x}{x} \, dx = -\frac{\pi^2}{24} + \gamma\left(\frac{\gamma}{2}+\ln a\right)+\frac{\ln^2 a}{2}-\frac{\pi}{2}i(\gamma+\ln a) + \sum_{n\ge 1}\frac{(ia)^n}{n!n^2}.

Similarly


\int_1^\infty e^{iax}\frac{\ln x}{x^2}dx
=1+ia[-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a-1\right)+\frac{\ln^2 a}{2}-\ln a+1
-\frac{i\pi}{2}(\gamma+\ln a-1)]+\sum_{n\ge 1}\frac{(ia)^{n+1}}{(n+1)!n^2}.

Read more about this topic:  Trigonometric Integral

Famous quotes containing the words relation with, relation, integral, imaginary and/or argument:

    There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.
    Umberto Eco (b. 1932)

    The difference between objective and subjective extension is one of relation to a context solely.
    William James (1842–1910)

    Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made me—a book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.
    Michel de Montaigne (1533–1592)

    Don’t let us make imaginary evils, when you know we have so many real ones to encounter.
    Oliver Goldsmith (1728–1774)

    “English! they are barbarians; they don’t believe in the great God.” I told him, “Excuse me, Sir. We do believe in God, and in Jesus Christ too.” “Um,” says he, “and in the Pope?” “No.” “And why?” This was a puzzling question in these circumstances.... I thought I would try a method of my own, and very gravely replied, “Because we are too far off.” A very new argument against the universal infallibility of the Pope.
    James Boswell (1740–1795)