Relation With The Exponential Integral of Imaginary Argument
The function
is called the exponential integral. It is closely related to Si and Ci:
As each involved function is analytic except the cut at negative values of the argument, the area of validity of the relation should be extended to . (Out of this range, additional terms which are integer factors of appear in the expression).
Cases of imaginary argument of the generalized integro-exponential function are
which is the real part of
Similarly
Read more about this topic: Trigonometric Integral
Famous quotes containing the words relation with the, relation, integral, imaginary and/or argument:
“There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.”
—Umberto Eco (b. 1932)
“You know there are no secrets in America. Its quite different in England, where people think of a secret as a shared relation between two people.”
—W.H. (Wystan Hugh)
“Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.”
—Henry David Thoreau (18171862)
“Where my imaginary line
Bends square in woods, an iron spine
And pile of real rocks have been founded.”
—Robert Frost (18741963)
“Our argument ... will result, not upon logic by itselfthough without logic we should never have got to this pointbut upon the fortunate contingent fact that people who would take this logically possible view, after they had really imagined themselves in the other mans position, are extremely rare.”
—Richard M. Hare (b. 1919)



![\int_1^\infty e^{iax}\frac{\ln x}{x^2}dx
=1+ia[-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a-1\right)+\frac{\ln^2 a}{2}-\ln a+1
-\frac{i\pi}{2}(\gamma+\ln a-1)]+\sum_{n\ge 1}\frac{(ia)^{n+1}}{(n+1)!n^2}.](http://upload.wikimedia.org/math/a/e/d/aeded28afed65b67b55686229ace42ee.png)