Trigonometric Integral - Relation With The Exponential Integral of Imaginary Argument

Relation With The Exponential Integral of Imaginary Argument

The function

is called the exponential integral. It is closely related to Si and Ci:


{\rm E}_1( {\rm i}\!~ x) = i\left(-\frac{\pi}{2} + {\rm Si}(x)\right)-{\rm Ci}(x) = i~{\rm si}(x) - {\rm ci}(x) \qquad(x>0)

As each involved function is analytic except the cut at negative values of the argument, the area of validity of the relation should be extended to . (Out of this range, additional terms which are integer factors of appear in the expression).

Cases of imaginary argument of the generalized integro-exponential function are


\int_1^\infty \cos(ax)\frac{\ln x}{x} \, dx =
-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a\right)+\frac{\ln^2a}{2}
+\sum_{n\ge 1}\frac{(-a^2)^n}{(2n)!(2n)^2},

which is the real part of


\int_1^\infty e^{iax}\frac{\ln x}{x} \, dx = -\frac{\pi^2}{24} + \gamma\left(\frac{\gamma}{2}+\ln a\right)+\frac{\ln^2 a}{2}-\frac{\pi}{2}i(\gamma+\ln a) + \sum_{n\ge 1}\frac{(ia)^n}{n!n^2}.

Similarly


\int_1^\infty e^{iax}\frac{\ln x}{x^2}dx
=1+ia[-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a-1\right)+\frac{\ln^2 a}{2}-\ln a+1
-\frac{i\pi}{2}(\gamma+\ln a-1)]+\sum_{n\ge 1}\frac{(ia)^{n+1}}{(n+1)!n^2}.

Read more about this topic:  Trigonometric Integral

Famous quotes containing the words relation with, relation, integral, imaginary and/or argument:

    [Man’s] life consists in a relation with all things: stone, earth, trees, flowers, water, insects, fishes, birds, creatures, sun, rainbow, children, women, other men. But his greatest and final relation is with the sun.
    —D.H. (David Herbert)

    Parents ought, through their own behavior and the values by which they live, to provide direction for their children. But they need to rid themselves of the idea that there are surefire methods which, when well applied, will produce certain predictable results. Whatever we do with and for our children ought to flow from our understanding of and our feelings for the particular situation and the relation we wish to exist between us and our child.
    Bruno Bettelheim (20th century)

    Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made me—a book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.
    Michel de Montaigne (1533–1592)

    All legendary obstacles lay between
    Us, the long imaginary plain,
    The monstrous ruck of mountains
    John Montague (b. 1929)

    “English! they are barbarians; they don’t believe in the great God.” I told him, “Excuse me, Sir. We do believe in God, and in Jesus Christ too.” “Um,” says he, “and in the Pope?” “No.” “And why?” This was a puzzling question in these circumstances.... I thought I would try a method of my own, and very gravely replied, “Because we are too far off.” A very new argument against the universal infallibility of the Pope.
    James Boswell (1740–1795)