Triangular Prism - Related Polyhedra and Tilings

Related Polyhedra and Tilings

This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and Coxeter group symmetry.

Dimensional family of truncated polyhedra and tilings: 3.2n.2n
Symmetry
*n32
Spherical Euclidean Hyperbolic...
*232

D3h
*332

Td
*432

Oh
*532

Ih
*632

P6m
*732

*832
...
*∞32

Truncated
figures

3.4.4

3.6.6

3.8.8

3.10.10

3.12.12

3.14.14

3.16.16

3.∞.∞
Coxeter
Schläfli

t0,1{2,3}

t0,1{3,3}

t0,1{4,3}

t0,1{5,3}

t0,1{6,3}

t0,1{7,3}

t0,1{8,3}

t0,1{∞,3}
Uniform dual figures
Triakis
figures

V3.4.4

V3.6.6

V3.8.8

V3.10.10

V3.12.12

V3.14.14

V3.16.16

V3.∞.∞
Coxeter

This polyhedron is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

This polyhedron is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

Dimensional family of expanded polyhedra and tilings: 3.4.n.4
Symmetry
*n32
Spherical Planar Hyperbolic...
*232

D3h
*332

Td
*432

Oh
*532

Ih
*632

P6m
*732

*832
...
*∞32

Expanded
figure

3.4.2.4

3.4.3.4

3.4.4.4

3.4.5.4

3.4.6.4

3.4.7.4

3.4.8.4

3.4.∞.4
Coxeter
Schläfli

t0,2{2,3}

t0,2{3,3}

t0,2{4,3}

t0,2{5,3}

t0,2{6,3}

t0,2{7,3}

t0,2{8,3}

t0,2{∞,3}
Deltoidal figure
V3.4.2.4

V3.4.3.4

V3.4.4.4

V3.4.5.4

V3.4.6.4

V3.4.7.4

V3.4.8.4

V3.4.∞.4
Coxeter

Read more about this topic:  Triangular Prism

Famous quotes containing the word related:

    Perhaps it is nothingness which is real and our dream which is non-existent, but then we feel think that these musical phrases, and the notions related to the dream, are nothing too. We will die, but our hostages are the divine captives who will follow our chance. And death with them is somewhat less bitter, less inglorious, perhaps less probable.
    Marcel Proust (1871–1922)