Definition
Let l, m, n be integers greater than or equal to 2. A triangle group Δ(l,m,n) is a group of motions of the Euclidean plane, the two-dimensional sphere, the real projective plane, or the hyperbolic plane generated by the reflections in the sides of a triangle with angles π/l, π/m and π/n (measured in radians). The product of the reflections in two adjacent sides is a rotation by the angle which is twice the angle between those sides, 2π/l, 2π/m and 2π/n Therefore, if the generating reflections are labeled a, b, c and the angles between them in the cyclic order are as given above, then the following relations hold:
It is a theorem that all other relations between a, b, c are consequences of these relations and that Δ(l,m,n) is a discrete group of motions of the corresponding space. Thus a triangle group is a reflection group that admits a group presentation
An abstract group with this presentation is a Coxeter group with three generators.
Read more about this topic: Triangle Group
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)