Matrix Representation
A translation is an affine transformation with no fixed points. Matrix multiplications always have the origin as a fixed point. Nevertheless, there is a common workaround using homogeneous coordinates to represent a translation of a vector space with matrix multiplication: Write the 3-dimensional vector w = (wx, wy, wz) using 4 homogeneous coordinates as w = (wx, wy, wz, 1).
To translate an object by a vector v, each homogeneous vector p (written in homogeneous coordinates) can be multiplied by this translation matrix:
As shown below, the multiplication will give the expected result:
The inverse of a translation matrix can be obtained by reversing the direction of the vector:
Similarly, the product of translation matrices is given by adding the vectors:
Because addition of vectors is commutative, multiplication of translation matrices is therefore also commutative (unlike multiplication of arbitrary matrices).
Read more about this topic: Translation (geometry)
Famous quotes containing the word matrix:
“The matrix is God?
In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this beings omniscience and omnipotence are assumed to be limited to the matrix.
If it has limits, it isnt omnipotent.
Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
—William Gibson (b. 1948)