Transfer Principle - Generalizations of The Concept of Number

Generalizations of The Concept of Number

Historically, the concept of number has been repeatedly generalized. The addition of 0 to the natural numbers was a major intellectual accomplishment in its time. The addition of negative integers to form already constituted a departure from the realm of immediate experience to the realm of mathematical models. The further extension, the rational numbers, is more familiar to a layperson than their completion, partly because the reals do not correspond to any physical reality (in the sense of measurement and computation) different from that represented by . Thus, the notion of an irrational number is meaningless to even the most powerful floating-point computer. The necessity for such an extension stems not from physical observation but rather from the internal requirements of mathematical coherence. The infinitesimals entered mathematical discourse at a time when such a notion was required by mathematical developments at the time, namely the emergence of what became known as the infinitesimal calculus. As already mentioned above, the mathematical justification for this latest extension was delayed by three centuries. Keisler wrote:

"In discussing the real line we remarked that we have no way of knowing what a line in physical space is really like. It might be like the hyperreal line, the real line, or neither. However, in applications of the calculus, it is helpful to imagine a line in physical space as a hyperreal line."

The self-consistent development of the hyperreals turned out to be possible if every true first-order logic statement that uses basic arithmetic (the natural numbers, plus, times, comparison) and quantifies only over the real numbers was assumed to be true in a reinterpreted form if we presume that it quantifies over hyperreal numbers. For example, we can state that for every real number there is another number greater than it:

The same will then also hold for hyperreals:

Another example is the statement that if you add 1 to a number you get a bigger number:

which will also hold for hyperreals:

The correct general statement that formulates these equivalences is called the transfer principle. Note that in many formulas in analysis quantification is over higher order objects such as functions and sets which makes the transfer principle somewhat more subtle than the above examples suggest.

Read more about this topic:  Transfer Principle

Famous quotes containing the words concept and/or number:

    Modern man, if he dared to be articulate about his concept of heaven, would describe a vision which would look like the biggest department store in the world, showing new things and gadgets, and himself having plenty of money with which to buy them. He would wander around open-mouthed in this heaven of gadgets and commodities, provided only that there were ever more and newer things to buy, and perhaps that his neighbors were just a little less privileged than he.
    Erich Fromm (1900–1980)

    A considerable percentage of the people we meet on the street are people who are empty inside, that is, they are actually already dead. It is fortunate for us that we do not see and do not know it. If we knew what a number of people are actually dead and what a number of these dead people govern our lives, we should go mad with horror.
    George Gurdjieff (c. 1877–1949)