Transfer Function - Explanation

Explanation

Transfer functions are commonly used in the analysis of systems such as single-input single-output filters, typically within the fields of signal processing, communication theory, and control theory. The term is often used exclusively to refer to linear, time-invariant systems (LTI), as covered in this article. Most real systems have non-linear input/output characteristics, but many systems, when operated within nominal parameters (not "over-driven") have behavior that is close enough to linear that LTI system theory is an acceptable representation of the input/output behavior.

In its simplest form for continuous-time input signal and output, the transfer function is the linear mapping of the Laplace transform of the input, to the Laplace transform of the output :


or

In discrete-time systems, the function is similarly written as (see Z-transform) and is often referred to as the pulse-transfer function.

Read more about this topic:  Transfer Function

Famous quotes containing the word explanation:

    To develop an empiricist account of science is to depict it as involving a search for truth only about the empirical world, about what is actual and observable.... It must involve throughout a resolute rejection of the demand for an explanation of the regularities in the observable course of nature, by means of truths concerning a reality beyond what is actual and observable, as a demand which plays no role in the scientific enterprise.
    Bas Van Fraassen (b. 1941)

    My companion assumes to know my mood and habit of thought, and we go on from explanation to explanation, until all is said that words can, and we leave matters just as they were at first, because of that vicious assumption.
    Ralph Waldo Emerson (1803–1882)

    How strange a scene is this in which we are such shifting figures, pictures, shadows. The mystery of our existence—I have no faith in any attempted explanation of it. It is all a dark, unfathomed profound.
    Rutherford Birchard Hayes (1822–1893)