Definition
Formally, an analytic function ƒ(z) of the real or complex variables z1,…,zn is transcendental if z1, …, zn, ƒ(z) are algebraically independent, i.e., if ƒ is transcendental over the field C(z1, …,zn).
A transcendental function is a function that "transcends" algebra in the sense that it cannot be expressed in terms of a finite sequence of the algebraic operations of addition, multiplication, power, and root extraction.
Read more about this topic: Transcendental Function
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)