Open Problems
While the Gelfond-Schneider theorem proved that a large class of numbers was transcendental, this class was still countable. Many well known mathematical constants are still not known to be transcendental, and in some cases it is not even known whether they are rational or irrational. A partial list can be found here.
A major problem in transcendence theory is showing that a particular set of numbers is algebraically independent rather than just showing that individual elements are transcendental. So while we know that e and π are transcendental that doesn't imply that e + π is transcendental, nor other combinations of the two (except eπ, Gelfond's constant, which is known to be transcendental). Another major problem is dealing with numbers that are not related to the exponential function. The main results in transcendence theory tend to revolve around e and the logarithm function, which means that wholly new methods tend to be required to deal with numbers that cannot be expressed in terms of these two objects in an elementary fashion.
Schanuel's conjecture would solve the first of these problems somewhat as it deals with algebraic independence and would indeed confirm that e+π is transcendental. It still revolves around the exponential function however and so would not necessarily deal with numbers such as Apéry's constant or the Euler–Mascheroni constant. Another extremely difficult unsolved problem is the so-called Constant or Identity problem.
Read more about this topic: Transcendence Theory
Famous quotes containing the words open and/or problems:
“Who shall forbid a wise skepticism, seeing that there is no practical question on which any thing more than an approximate solution can be had? Is not marriage an open question, when it is alleged, from the beginning of the world, that such as are in the institution wish to get out, and such as are out wish to get in?”
—Ralph Waldo Emerson (18031882)
“Sustained unemployment not only denies parents the opportunity to meet the food, clothing, and shelter needs of their children but also denies them the sense of adequacy, belonging, and worth which being able to do so provides. This increases the likelihood of family problems and decreases the chances of many children to be adequately prepared for school.”
—James P. Comer (20th century)