Formal Definition
Let V be a vector space of dimension n over a field F (with n≥2), and let Fun(V,V) denote the linear transformations on V. An n-trace diagram is a graph, where the sets Vi (i = 1, 2, n) are composed of vertices of degree i, together with the following additional structures:
- a ciliation at each vertex in the graph, which is an explicit ordering of the adjacent edges at that vertex;
- a labeling V2 → Fun(V,V) associating each degree-2 vertex to a linear transformation.
Note that V2 and Vn should be considered as distinct sets in the case n = 2. A framed trace diagram is a trace diagram together with a partition of the degree-1 vertices V1 into two disjoint ordered collections called the inputs and the outputs.
The "graph" underlying a trace diagram may have the following special features, which are not always included in the standard definition of a graph:
- Loops are permitted (a loop is an edges that connects a vertex to itself).
- Edges that have no vertices are permitted, and are represented by small circles.
- Multiple edges between the same two vertices are permitted.
Read more about this topic: Trace Diagram
Famous quotes containing the words formal and/or definition:
“Then the justice,
In fair round belly with good capon lined,
With eyes severe and beard of formal cut,
Full of wise saws and modern instances;
And so he plays his part.”
—William Shakespeare (15641616)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)