Mechanism of Topological Order
‹ The template below (Unsolved) is being considered for possible deletion. See templates for discussion to help reach a consensus.›Is topological order stable at non-zero temperature? |
A large class of topological orders is realized through a mechanism called string-net condensation. This class of topological orders can be classified by utilizing tensor category (or monoidal category) theory. One finds that string-net condensation can generate infinitely many different types of topological orders, which may indicate that there are many different new types of materials remaining to be discovered.
The collective motions of condensed strings give rise to excitations above the string-net condensed states. Those excitations turn out to be gauge bosons. The ends of strings are defects which correspond to another type of excitations. Those excitations are the gauge charges and can carry Fermi or fractional statistics.
The condensations of other extended objects such as "membranes", "brane-nets", and fractals also lead to topologically ordered phases and "quantum glassiness".
Read more about this topic: Topological Order
Famous quotes containing the words mechanism of, mechanism and/or order:
“A mechanism of some kind stands between us and almost every act of our lives.”
—Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 3, ch. 2 (1962)
“Ive never known a Philadelphian who wasnt a downright character; possibly a defense mechanism resulting from the dullness of their native habitat.”
—Anita Loos (18881981)
“I tell you, sir, the only safeguard of order and discipline in the modern world is a standardized worker with interchangeable parts. That would solve the entire problem of management.”
—Jean Giraudoux (18821944)