An algorithm is said to be of polynomial time if its running time is upper bounded by a polynomial expression in the size of the input for the algorithm, i.e., T(n) = O(nk) for some constant k. Problems for which a polynomial time algorithm exists belong to the complexity class P, which is central in the field of computational complexity theory. Cobham's thesis states that polynomial time is a synonym for "tractable", "feasible", "efficient", or "fast".
Some examples of polynomial time algorithms:
- The quicksort sorting algorithm on n integers performs at most operations for some constant A. Thus it runs in time and is a polynomial time algorithm.
- All the basic arithmetic operations (addition, subtraction, multiplication, division, and comparison) can be done in polynomial time.
- Maximum matchings in graphs can be found in polynomial time.
Read more about this topic: Time Complexity
Famous quotes containing the word time:
“Terror is as much a part of the concept of truth as runniness is of the concept of jam. We wouldnt like jam if it didnt, by its very nature, ooze. We wouldnt like truth if it wasnt sticky, if, from time to time, it didnt ooze blood.”
—Jean Baudrillard (b. 1929)