Tiling By Regular Polygons - The Hyperbolic Plane

The Hyperbolic Plane

These tessellations are also related to regular and semiregular polyhedra and tessellations of the hyperbolic plane. Semiregular polyhedra are made from regular polygon faces, but their angles at a point add to less than 360 degrees. Regular polygons in hyperbolic geometry have angles smaller than they do in the plane. In both these cases, that the arrangement of polygons is the same at each vertex does not mean that the polyhedron or tiling is vertex-transitive.

Some regular tilings of the hyperbolic plane (Using Poincaré disc model projection)

Read more about this topic:  Tiling By Regular Polygons

Famous quotes containing the word plane:

    At the moment when a man openly makes known his difference of opinion from a well-known party leader, the whole world thinks that he must be angry with the latter. Sometimes, however, he is just on the point of ceasing to be angry with him. He ventures to put himself on the same plane as his opponent, and is free from the tortures of suppressed envy.
    Friedrich Nietzsche (1844–1900)