Tikhonov Regularization - Regularization in Hilbert Space

Regularization in Hilbert Space

Typically discrete linear ill-conditioned problems result from discretization of integral equations, and one can formulate a Tikhonov regularization in the original infinite dimensional context. In the above we can interpret as a compact operator on Hilbert spaces, and and as elements in the domain and range of . The operator is then a self-adjoint bounded invertible operator.

Read more about this topic:  Tikhonov Regularization

Famous quotes containing the word space:

    At first thy little being came:
    If nothing once, you nothing lose,
    For when you die you are the same;
    The space between, is but an hour,
    The frail duration of a flower.
    Philip Freneau (1752–1832)