Tikhonov Regularization - Regularization in Hilbert Space

Regularization in Hilbert Space

Typically discrete linear ill-conditioned problems result from discretization of integral equations, and one can formulate a Tikhonov regularization in the original infinite dimensional context. In the above we can interpret as a compact operator on Hilbert spaces, and and as elements in the domain and range of . The operator is then a self-adjoint bounded invertible operator.

Read more about this topic:  Tikhonov Regularization

Famous quotes containing the word space:

    Thus all our dignity lies in thought. Through it we must raise ourselves, and not through space or time, which we cannot fill. Let us endeavor, then, to think well: this is the mainspring of morality.
    Blaise Pascal (1623–1662)