Tikhonov Regularization - Regularization in Hilbert Space

Regularization in Hilbert Space

Typically discrete linear ill-conditioned problems result from discretization of integral equations, and one can formulate a Tikhonov regularization in the original infinite dimensional context. In the above we can interpret as a compact operator on Hilbert spaces, and and as elements in the domain and range of . The operator is then a self-adjoint bounded invertible operator.

Read more about this topic:  Tikhonov Regularization

Famous quotes containing the word space:

    Let the space under the first storey be dark, let the water
    lap the stone posts, and vivid green slime glimmer
    upon them; let a boat be kept there.
    Denise Levertov (b. 1923)