Regularization in Hilbert Space
Typically discrete linear ill-conditioned problems result from discretization of integral equations, and one can formulate a Tikhonov regularization in the original infinite dimensional context. In the above we can interpret as a compact operator on Hilbert spaces, and and as elements in the domain and range of . The operator is then a self-adjoint bounded invertible operator.
Read more about this topic: Tikhonov Regularization
Famous quotes containing the word space:
“At first thy little being came:
If nothing once, you nothing lose,
For when you die you are the same;
The space between, is but an hour,
The frail duration of a flower.”
—Philip Freneau (17521832)