Tight Binding - Table of Interatomic Matrix Elements

Table of Interatomic Matrix Elements

In 1954 J.C. Slater and F.G. Koster published, mainly for the calculation of transition metal d-bands, a table of interatomic matrix elements

which, with a little patience and effort, can also be derived from the cubic harmonic orbitals straightforwardly. The table expresses the matrix elements as functions of LCAO two-centre bond integrals between two cubic harmonic orbitals, i and j, on adjacent atoms. The bond integrals are for example the, and for sigma, pi and delta bonds.

The interatomic vector is expressed as

where d is the distance between the atoms and l, m and n are the direction cosines to the neighboring atom.

E_{x,x^2-y^2} = \frac{\sqrt{3}}{2} l (l^2 - m^2) V_{pd\sigma} +
l (1 - l^2 + m^2) V_{pd\pi}
E_{y,x^2-y^2} = \frac{\sqrt{3}}{2} m(l^2 - m^2) V_{pd\sigma} -
m (1 + l^2 - m ^2) V_{pd\pi}
E_{z,3z^2-r^2} = n V_{pd\sigma} +
\sqrt{3} n (l^2 + m^2) V_{pd\pi}
E_{xy,xy} = 3 l^2 m^2 V_{dd\sigma} + (l^2 + m^2 - 4 l^2 m^2) V_{dd\pi} +
(n^2 + l^2 m^2) V_{dd\delta}
E_{xy,yz} = 3 l m^2 nV_{dd\sigma} + l n (1 - 4 m^2) V_{dd\pi} +
l n (m^2 - 1) V_{dd\delta}
E_{xy,zx} = 3 l^2 m n V_{dd\sigma} + m n (1 - 4 l^2) V_{dd\pi} +
m n (l^2 - 1) V_{dd\delta}
E_{xy,x^2-y^2} = \frac{3}{2} l m (l^2 - m^2) V_{dd\sigma} +
2 l m (m^2 - l^2) V_{dd\pi} + l m (l^2 - m^2) / 2 V_{dd\delta}
E_{yz,x^2-y^2} = \frac{3}{2} m n (l^2 - m^2) V_{dd\sigma} -
m n V_{dd\pi} + m n V_{dd\delta}
E_{zx,x^2-y^2} = \frac{3}{2} n l (l^2 - m^2) V_{dd\sigma} +
n l V_{dd\pi} - n l V_{dd\delta}
E_{xy,3z^2-r^2} = \sqrt{3} \left[ l m (n^2 - (l^2 + m^2) / 2) V_{dd\sigma} -
2 l m n^2 V_{dd\pi} + l m (1 + n^2) / 2 V_{dd\delta} \right]
E_{yz,3z^2-r^2} = \sqrt{3} \left[ m n (n^2 - (l^2 + m^2) / 2) V_{dd\sigma} +
m n (l^2 + m^2 - n^2) V_{dd\pi} - m n (l^2 + m^2) / 2 V_{dd\delta} \right]
E_{zx,3z^2-r^2} = \sqrt{3} \left[ l n (n^2 - (l^2 + m^2) / 2) V_{dd\sigma} +
l n (l^2 + m^2 - n^2) V_{dd\pi} - l n (l^2 + m^2) / 2 V_{dd\delta} \right]
E_{x^2-y^2,x^2-y^2} = \frac{3}{4} (l^2 - m^2)^2 V_{dd\sigma} + V_{dd\pi} + V_{dd\delta}
E_{x^2-y^2,3z^2-r^2} = \sqrt{3} \left[
(l^2 - m^2) V_{dd\sigma} / 2 + n^2 (m^2 - l^2) V_{dd\pi} +
(1 + n^2)(l^2 - m^2) / 4 V_{dd\delta}\right]
E_{3z^2-r^2,3z^2-r^2} = ^2 V_{dd\sigma} +
3 n^2 (l^2 + m^2) V_{dd\pi} + \frac{3}{4} (l^2 + m^2)^2 V_{dd\delta}

Not all interatomic matrix elements are listed explicitly. Matrix elements that are not listed in this table can be constructed by permutation of indices and cosine directions of other matrix elements in the table.

Read more about this topic:  Tight Binding

Famous quotes containing the words table of, table, matrix and/or elements:

    Remember thee?
    Ay, thou poor ghost, whiles memory holds a seat
    In this distracted globe. Remember thee?
    Yea, from the table of my memory
    I’ll wipe away all trivial fond records,
    All saws of books, all forms, all pressures past
    That youth and observation copied there,
    And thy commandment all alone shall live
    Within the book and volume of my brain,
    William Shakespeare (1564–1616)

    When he was at the table with them, he took bread, blessed and broke it, and gave it to them. Then their eyes were opened, and they recognized him; and he vanished from their sight.
    Bible: New Testament, Luke 24:30,31.

    The Emmaus story.

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)

    English general and singular terms, identity, quantification, and the whole bag of ontological tricks may be correlated with elements of the native language in any of various mutually incompatible ways, each compatible with all possible linguistic data, and none preferable to another save as favored by a rationalization of the native language that is simple and natural to us.
    Willard Van Orman Quine (b. 1908)