Thermal Conductivity - Physical Origins

Physical Origins

Heat flux is exceedingly difficult to control and isolate in a laboratory setting. Thus at the atomic level, there are no simple, correct expressions for thermal conductivity. Atomically, the thermal conductivity of a system is determined by how atoms composing the system interact. There are two different approaches for calculating the thermal conductivity of a system.

  • The first approach employs the Green-Kubo relations. Although this employs analytic expressions which in principle can be solved, calculating the thermal conductivity of a dense fluid or solid using this relation requires the use of molecular dynamics computer simulation.
  • The second approach is based upon the relaxation time approach. Due to the anharmonicity within the crystal potential, the phonons in the system are known to scatter. There are three main mechanisms for scattering:
    • Boundary scattering, a phonon hitting the boundary of a system;
    • Mass defect scattering, a phonon hitting an impurity within the system and scattering;
    • Phonon-phonon scattering, a phonon breaking into two lower energy phonons or a phonon colliding with another phonon and merging into one higher energy phonon.

Read more about this topic:  Thermal Conductivity

Famous quotes containing the words physical and/or origins:

    My vocabulary dwells deep in my mind and needs paper to wriggle out into the physical zone. Spontaneous eloquence seems to me a miracle. I have rewritten—often several times—every word I have ever published. My pencils outlast their erasers.
    Vladimir Nabokov (1899–1977)

    The settlement of America had its origins in the unsettlement of Europe. America came into existence when the European was already so distant from the ancient ideas and ways of his birthplace that the whole span of the Atlantic did not widen the gulf.
    Lewis Mumford (1895–1990)