Tevatron - History

History

December 1, 1968 saw the breaking of ground for the linear accelerator (linac). The construction the Main Accelerator Enclosure began on October 3, 1969 when the first shovel of earth was turned Robert R. Wilson, NAL's director. This would become the 6.4 km circumference Fermilab's Main Ring.

The linac first 200 MeV beam started on December 1, 1970. The booster first 8 GeV beam was produced on May 20, 1971. On June 30, 1971, a proton beam was guided for the first time through the entire National Accelerator Laboratory accelerator system including the Main Ring. The beam was accelerated to only 7 Gev.

Back then, Booster Accelerator has taken 200 MeV protons from the Linac and "boosted" their energy to 8 billion electron volts. They were then injected into the Main Accelerator.

A series of milestones saw acceleration rise to 20 GeV on January 22, 1972 to 53 GeV on February 4 and to 100 GeV on February 11. On March 1, 1972, the then NAL accelerator system accelerated for the first time a beam of protons to its design energy of 200 GeV. By the end of 1973, NAL's accelerator system operated routinely at 300 GeV.

On 14 May, 1976 Fermilab took its protons all the way to 500 GeV. This achievement provided the opportunity to introduce a new energy scale, the teraelectronvolt (TeV), equal to 1000 GeV. On 17 June of that year, the European Super Proton Synchrotron accelerator (SPS) had achieved an initial circulating proton beam (with no accelerating radio-frequency power) of only 400 GeV.

The old copper magnets accelerator was shut down on August 15, 1977 for superconducting magnets to be mounted 'pickaback' on the main ring magnets. The 'Energy Doubler', as it was known then, produced its first accelerated beam—512 GeV—on July 3, 1983.

Its initial energy of 800 GeV was achieved on February 16, 1984. On October 21, 1986 acceleration at the Tevatron was pushed to 900 GeV, providing a first proton–antiproton collision at 1.8 TeV on November 30, 1986.

The Main Injector, which replaced the Main Ring, was the most substantial addition, built over six years from 1993 at a cost of $290 million. Tevatron collider Run II begun on March 1, 2001 after successful completion of that facility upgrade. From then, the beam had been capable of delivering an energy of 980 GeV.

On July 16, 2004 the Tevatron achieved a new peak luminosity, breaking the record previously held by the old European Intersecting Storage Rings (ISR) at CERN. That very Fermilab record was doubled on September 9, 2006, then a bit more than tripled on March 17, 2008 and ultimately multiplied by a factor of 4 over the previous 2004 record on April 16, 2010 (up to 4×1032 cm−2 s−1).

The Tevatron ceased operations on 30 September, 2011. By the end of 2011, the Large Hadron Collider (LHC) at CERN had achieved a luminosity almost ten times higher than Tevatron's (at 3.65×1033 cm−2 s−1) and a beam energy of 3.5 TeV each (doing so since March 18, 2010), already ~3.6 times the capabilities of the Tevatron (at 0.98 TeV).

Read more about this topic:  Tevatron

Famous quotes containing the word history:

    America is the only nation in history which miraculously has gone directly from barbarism to degeneration without the usual interval of civilization.
    Georges Clemenceau (1841–1929)

    America is, therefore the land of the future, where, in the ages that lie before us, the burden of the World’s history shall reveal itself. It is a land of desire for all those who are weary of the historical lumber-room of Old Europe.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    Only the history of free peoples is worth our attention; the history of men under a despotism is merely a collection of anecdotes.
    —Sébastien-Roch Nicolas De Chamfort (1741–1794)