Tests of General Relativity - Strong Field Tests: Binary Pulsars

Strong Field Tests: Binary Pulsars

Further information: Binary pulsar

Pulsars are rapidly rotating neutron stars which emit regular radio pulses as they rotate. As such they act as clocks which allow very precise monitoring of their orbital motions. Observations of pulsars in orbit around other stars have all demonstrated substantial periapsis precessions that cannot be accounted for classically but can be accounted for by using general relativity. For example, the Hulse–Taylor binary pulsar PSR B1913+16 (a pair of neutron stars in which one is detected as a pulsar) has an observed precession of over 4° of arc per year (periastron shift per orbit only about 10−6). This precession has been used to compute the masses of the components.

Similarly to the way in which atoms and molecules emit electromagnetic radiation, a gravitating mass that is in quadrupole type or higher order vibration, or is asymmetric and in rotation, can emit gravitational waves. These gravitational waves are predicted to travel at the speed of light. For example, planets orbiting the Sun constantly lose energy via gravitational radiation, but this effect is so small that it is unlikely it will be observed in the near future (Earth radiates about 200 watts (see gravitational waves) of gravitational radiation). Gravitational waves have been indirectly detected from the Hulse–Taylor binary. Precise timing of the pulses shows that the stars orbit only approximately according to Kepler's Laws: over time they gradually spiral towards each other, demonstrating an energy loss in close agreement with the predicted energy radiated by gravitational waves. Thus, although the waves have not been directly measured, their effect seems necessary to explain the orbits. For their discovery of this pulsar, Hulse and Taylor won the Nobel prize.

A "double pulsar" discovered in 2003, PSR J0737-3039, has a periastron precession of 16.90° per year; unlike the Hulse–Taylor binary, both neutron stars are detected as pulsars, allowing precision timing of both members of the system. Due to this, the tight orbit, the fact that the system is almost edge-on, and the very low transverse velocity of the system as seen from Earth, J0737−3039 provides by far the best system for strong-field tests of general relativity known so far. Several distinct relativistic effects are observed, including orbital decay as in the Hulse–Taylor system. After observing the system for two and a half years, four independent tests of general relativity were possible, the most precise (the Shapiro delay) confirming the general relativity prediction within 0.05% (nevertheless the periastron shift per orbit is only about 0.0013% of a circle and thus it is not a higher-order relativity test).

In 2013, an international team of astronomers report new data from observing a pulsar-white dwarf system PSR J0348+0432, in which they have been able to measure a change in the orbital period 8 millionths of a second per year, and confirmed GR predictions in a regime of extreme gravitational fields never probed before; but there are still some competing theories that would agree with these data.

Read more about this topic:  Tests Of General Relativity

Famous quotes containing the words strong and/or field:

    The strong are so stupid.
    —E.M. (Edward Morgan)

    When white men were willing to put their own offspring in the kitchen and corn field and allowed them to be sold into bondage as slaves and degraded them as another man’s slave, the retribution of wrath was hanging over this country and the South paid penance in four years of bloody war.
    Rebecca Latimer Felton (1835–1930)