Taylor Series in Several Variables
The Taylor series may also be generalized to functions of more than one variable with
For example, for a function that depends on two variables, x and y, the Taylor series to second order about the point (a, b) is:
where the subscripts denote the respective partial derivatives.
A second-order Taylor series expansion of a scalar-valued function of more than one variable can be written compactly as
where is the gradient of evaluated at and is the Hessian matrix. Applying the multi-index notation the Taylor series for several variables becomes
which is to be understood as a still more abbreviated multi-index version of the first equation of this paragraph, again in full analogy to the single variable case.
Read more about this topic: Taylor Series
Famous quotes containing the words taylor, series and/or variables:
“Personality is more important than beauty, but imagination is more important than both of them.”
—Laurette Taylor (18871946)
“The professional celebrity, male and female, is the crowning result of the star system of a society that makes a fetish of competition. In America, this system is carried to the point where a man who can knock a small white ball into a series of holes in the ground with more efficiency than anyone else thereby gains social access to the President of the United States.”
—C. Wright Mills (19161962)
“Science is feasible when the variables are few and can be enumerated; when their combinations are distinct and clear. We are tending toward the condition of science and aspiring to do it. The artist works out his own formulas; the interest of science lies in the art of making science.”
—Paul Valéry (18711945)