Taylor Series in Several Variables
The Taylor series may also be generalized to functions of more than one variable with
For example, for a function that depends on two variables, x and y, the Taylor series to second order about the point (a, b) is:
where the subscripts denote the respective partial derivatives.
A second-order Taylor series expansion of a scalar-valued function of more than one variable can be written compactly as
where is the gradient of evaluated at and is the Hessian matrix. Applying the multi-index notation the Taylor series for several variables becomes
which is to be understood as a still more abbreviated multi-index version of the first equation of this paragraph, again in full analogy to the single variable case.
Read more about this topic: Taylor Series
Famous quotes containing the words taylor, series and/or variables:
“And what if all of animated nature
Be but organic Harps diversely framed,
That tremble into thought, as oer them sweeps
Plastic and vast, one intellectual breeze,
At once the Soul of each, and God of all?”
—Samuel Taylor Coleridge (17721834)
“Through a series of gradual power losses, the modern parent is in danger of losing sight of her own child, as well as her own vision and style. Its a very big price to pay emotionally. Too bad its often accompanied by an equally huge price financially.”
—Sonia Taitz (20th century)
“The variables of quantification, something, nothing, everything, range over our whole ontology, whatever it may be; and we are convicted of a particular ontological presupposition if, and only if, the alleged presuppositum has to be reckoned among the entities over which our variables range in order to render one of our affirmations true.”
—Willard Van Orman Quine (b. 1908)